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SUMMARY 
The accuracy of a deterministic particle method in approximating the solution of the Navier-Stokes 
equations is investigated. The convective part is solved using a classical vortex method for inviscid fluids, and 
an iterative procedure is added to improve the interpolation of the vorticity function. In our examples the 
vorticity is radially symmetric. For a regular initial data, a discrete quadratic error on the velocity and 
the vorticity is considered. Otherwise, for a singular initial data, the exact and computed angular moments 
of the vorticity are compared. 
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INTRODUCTION 

The two-dimensional flow of an incompressible viscous fluid is described by the Navier-Stokes 
equations. We use a velocity-vorticity formulation: 

80/8t  + ( U . V ) w  - VAO = 0, O ( Z ,  0) = 00,  (1) 

div(U)=O, rot(U)=o,  U - 0  when ( ( z ( ( -w ,  ( 2 )  

where U(z,  t )  is the velocity field (z  = (x, y ) ~  R2, t =- 0), w is the vorticity, v is the kinematic 
viscosity and z represents the spatial co-ordinates. 

When classical methods (finite element or finite difference methods) are used to simulate this 
flow at high Reynolds number, a fine mesh is required to avoid introducing grid-scale disssipation 
and dispersion errors. To overcome these difficulties, Chorin' has proposed a grid-free algorithm 
which is a fractional step method. The vorticity field is discretized through vortex-carrying 
particles. At each time step the convective part of the Navier-Stokes equations is solved by 
following these particles throughout the fluid (vortex method). The diffusion part is treated by 
superimposing a Gaussian random walk on the velocity of the particles. This method has been 
successfully applied to many 

Recently, another way to treat the viscous term was developed by Cottet and Gallic4 and 
H u b e r ~ o n . ~  This approximation uses an exact similarity solution of the heat equation for an initial 
condition restricted to a single source and an infinite domain. Up to now, applications of 
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this method include mixing layers,6 aerodynamic calculations5 and comparisons with exact 
 solution^.^ 

In a recent work by Mas-Gallic and Raviart,* the conservative version of this method has been 
found to derive from a more general methodology for computing the solution of symmetric 
hyperbolic systems. This leads to a new extended class of numerical schemes which can be 
interpreted as a ‘generalized finite difference formulation’. The proposal of this paper is to apply 
this new deterministic particle approximation of the diffusion in the more general case of the 
Navier-Stokes equations. In order to investigate the accuracy of such an algorithm, we shall 
consider numerical examples for which an exact analytical solution is known; this will permit a 
precise computation of the error made by replacing the exact solution by its numerical 
approximation. Improvements, in comparison with the previous random walk proposed by 
Chorin, will be shown up as well. 

The paper is divided into three parts. The first section presents the general method, describing in 
particular its two main new points which are: first, the particle approximation of the Laplacian 
operator, and secondly, an efficient numerical algorithm for the interpolation of the vorticity 
function. The second section is devoted to computational tests. Two examples are considered. 
They are of radial symmetry, only in order to obtain an exact analytical solution, and of various 
regularity, in order to see if the method can work with singular initial data. Results are then 
presented and discussed in the third section. 

THE NUMERICAL METHOD 

The main idea of vortex methods is to follow fluid elements, called vortex particles, in a 
Lagrangian description of the flow. Because of the incompressibility condition, the volume of each 
particle remains constant in time. It is thus sufficient to follow the evolution of one point which 
represents the particle; this point is mathematically represented by a Dirac measure. 

We introduce a square grid of uniform mesh size h. Each cell Pj is centred at a grid point z j .  The 
initial vorticity distribution is approximated by a linear combination of Dirac measures: 

where 6 denotes the Dirac measure. 
The Lagrangian representation of the flow allows a direct integration of the convective part of 

equation (1). The method used here remains similar on that point to the classical vortex method 
which has been detailed in many other works (e.g. see Reference 9). The approximate solution 
oh(z, t )  of w ( x ,  t )  is: 

myz, t )  = Ch2wi(t)6(z-zj(t)), 
i 

(4) 

where z j ( t )  is the location of the particle j at time t and wj(t) is an approximation of w(zj(t) ,  t ) .  
Given a sufficiently smooth approximation U h  of the velocity field, the particle path z j ( t )  is the 

solution of the differential system: 

dzj(t)/dt = Uh(zj(t), t) ~ ~ ( 0 )  = zj. ( 5 )  
Let us consider now the diffusion term in (1). It is evaluated by generalized finite differences. For 

this computation a sufficiently smooth approximation of the vorticity field is required. In order to 
obtain this approximation, we introduce (in non-dimensional variables) CE(z) = ( I /E’){(Z/E), a 
smooth approximation of the delta measure, E being a scaling parameter9 and [ a radially 
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symmetric function. The value of wj(t)  appearing in (4) is obtained by solving the following 
differential system: 

dwj(t)/dt = F(wj( t ) ) ,  ~ ~ ( 0 )  = wj ,  (6) 

We can briefly explain the consistency of the algorithm by showing how vAo(zj(t), t )  is 
approximated by F(wj( t ) ) .  Within a quadrature error, we have to estimate the difference: 

D[,(z -z').(z' - Z) 
E(z,  t )  = Ao(z, t )  - 2 (w(z', t )  - W(Z, t ) )  dz' . 

I1 z - zr  / I 2  
By Taylor's formula with integral remainder we have 

where k is the order of approximation. The main part of the demonstration is the following 
consistency result: I, = 1 if M = (2,O) or (0,2) and I ,  = 0 otherwise, so that E(z,  t )  = R(z ,  t ) .  The 
proof, detailed in Reference 8, is briefly recalled in the Appendix. We then have IE(z, t)I < C E ~ .  If we 
consider a quadrature formula, the difference between Ao(z ,  t )  and ( l /v)F(w,( t ) )  is of order 
ek + h m / E m + l .  To complete the algorithm, the velocity U h  has to be related to the vorticity cob. In 
the case of the continuous problem the velocity is related to the vorticity by a convolution with a 
singular kernel K according to the Biot-Savart law: 

1 
U(z ,  t )=  K * w ( .  , t)(z) ,  where K(z)= __ 2nlz12 (-y7 4. 

In the particle method the kernel K is regularized by use of a cut-off function. We use the same 
function i, that was previously introduced in (7). The approximate velocity U h  is then given by 

Uh(z ,  t )  = K : o h ( .  , t ) ( z ) ,  where K ,  = K * [ , .  (9) 
Notice that considering a Euler explicit scheme with time step At for the integration of (5) and a 

Gaussian function of strength E = (4AtR for [,, the weights given by the conservative form of 
the splitting algorithm6 and the previous method are the same. The fractional step method 
proposed by Cottet-Gallic and Huberson can be therefore considered as a particular case of the 
particle algorithm described above. 

For the case of an inviscid fluid theoretical results of convergence have been obtained by many 
 author^.^^ l o  In that case the weight of the particle remains constant in time. Consider smooth 
initial data and a sufficiently smooth function [, which approximates 6 to order k;' the error 
estimate on the velocity in L" is ck + h m / E m - l ,  where m is related to the regularity of [. 

The theoretical analysis of the method in the non-linear case has not yet been carried out except 
for the particular case of the splitting a l g ~ r i t h m . ~  The error estimate on the velocity in L p  is in this 
case (VAL)''', with a stability condition h2 < CvAt ,  which gives a relation between the number of 
particles and the Reynolds number. 

The velocity computation which is necessary for the determination of the particle paths can be 
done, as described in (9), by use of the regularization of the kernel K .  The velocity is thus 

Uh(z, t )  = C h ' ~ j ( t ) K , ( z - ~ j ( t ) ) .  (10) 
j 
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The velocity can also be obtained by a regularization of the vorticity: 

Then 
Uh(z, t )= K *OIL(. , t ) ( z ) .  

In the case of an inviscid flow the weight wj( t )  of the particle j is constant: 

Wj( t )  = wj = O 0 ( Z j ) .  

The main source of error is related to the quadrature formulae contained in (10) and (1 1). 
Possible improvements have been proposed, such as rezoning,' more accurate integration rules' 
or improvement of the interpolation (1 1) of the vorticity f ~ n c t i o n . ' ~  The last one is used here; it is 
based on a 'scattered data interp~lation' . '~ The idea is to choose coefficients y j  so that 

or 

Ay=w,  Y = ( Y ~ ) ,  w=(wj ) ;  Aj ,k= hZi , ( z j ( t ) -Zk( t ) ) .  

This is done by an iterative procedure. Starting with y o  = w, then 

y"+ ' = y" + ( w  - Ay").  

The coefficients yj", obtained by n internal iterations, permit a new computation U ,  of the velocity: 

For the determination of the particle trajectories the approximate velocity U h  defined by (10) is 
thus replaced by U , .  

Theoretical results have recently been obtained in the case of the Euler  equation^.'^ Setting 
E = Chq, a < q < t ,  and using (13) to compute the velocity, the velocity fields converge in LP norm 
to O ( E ~ " ) .  In the case of the present algorithm we decided to use this procedure of internal 
iterations at each time step. 

From now on we suppress the index E and we call oh the computed value of the vorticity, 

so that U, = K*wh.  

THE MODEL PROBLEM 

As explained in the Introduction, our test problem consists of solving equations (1) and ( 2 )  with a 
radially symmetric initial condition. It follows that the vorticity equation (1) reduces to 

(16) awlat - v ~ w  = 0; 
w is a solution of the heat equation and can be written in the form 

O ( Z ,  t )  = E,(z - z',t)w,(z')dz',  s 
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where wo is the initial distribution of vorticity and E ,  is the fundamental solution for the heat 
equation: 

However, let us emphasize that in the numerical simulation no particular advantage is taken of 
this radial symmetry: the complete convection-diffusion equation of the vorticity (1) is considered 
instead of the pure heat equation (16). 

In order to determine the accuracy of the numerical method, we calculate the exact and 
numerical values of the velocity and vorticity fields at the particle locations and use a discrete 
norm to measure the error. Let us denote by Ue and we the exact values of the velocity and vorticity 
fields and by Uh and o, the corresponding numerical values. Then the two relative errors 
considered here are 

These two errors can be easily computed in the case where the exact velocity and vorticity have 
explicit expressions. However, when this is not possible, it is a common practice to compare the 
exact and computed values of an easily computable functional. As Milinazzo and Saffman did,15 
we choose the functional 

M ( t )  = 1z12w(z,t)dz O(Z, t)dz. (21) s Is 
This functional satisfies the equation 

M ( t ) =  M(0)  + 4tv. 

In the particle method M can be approximated by 

Mh(t)= Nh(t)/Dh(t)? 

where 

and 

D h ( t ) =  c n k ( t ) ,  nk(t )  = h 2 w k ( t ) *  
k 

Then the error we measure is 

E M ( t ) =  IM(l) - Mh(t)l/lM(t)l. 

The first test case presented corresponds to initial data of the form: 
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where c is a constant, 

U(z ,  t )  = ___ [l-”XP( 4v(t - l  + t l )  llzll’.)][-:]. 
2n II z II ’ 

In that case the vorticity and the velocity are C“ (R’) and have unbounded support. 
In the second test case a discontinuous vortjcity distribution is chosen: 

1, l lzl l  d 1, 
0, otherwise. a,= { 

Even in the case of the Euler equations there are no theoretical results of convergence for such kind 
of singular initial data. However, it would be of some interest to see if the method can work with 
such initial data. 

NUMERICAL RESULTS 

The computations are carried out in non-dimensional variables. Using the same notations for the 
dimensional and the non-dimensional variables and the same expressions as above, v becomes 
equivalent to the inverse of the Reynolds number, and the characteristic length is implicitly 
defined by the expression of the initial vorticity. In the first test case the characteristic velocity U ,  
is defined to be the root mean square value of the initial velocity, and the numerical value of c is 
adjusted for each Reynolds number so as to produce U,= 1.  

For a fixed time interval [O, T ]  the accuracy of the method depends on 

(i) The choice of the regularization function [ and the cut-off parameter E = hP 
(ii) the number of particles n4 
(iii) the number of internal iterations n p  of process (13). 

In all our computations we use a function [ which is an approximation of order three of the Dirac 
m e a s ~ r e : ~  

2 2 - 9  [ ( r )  =-- 
n(1 + r 2 ) 4 ’  

We choose an Adams-Bashforth scheme of order two for the time discretization of equations (5 )  
and (6) and we study the influence of the other parameters, E = h P ,  n4 and ny, and of the Reynolds 
number R.  

First we present the results for the case: 

At time t = 0 the particles are equally distributed in the square S = [ -2 ,2] ’ .  Setting 

r(t) = j$Z, t)dx/ s,,o(z, t)dx, 

t ,  is chosen so that ~ ( 0 )  is greater than 09999, and we fixed At =0-03. Theoretical results’ show that 
for the inviscid case the accuracy of the particle method increases as p(e  = h P )  increases. However, 
this result has been observed only for a short interval of time.I6 We expect the same result for the 
viscous case. We find that this holds as shown in Figure 1, where results are presented for a 
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Figure 1. Influence of the cut-off parameter E = hP for different values of p (A, 0.1; B, 0.2; C, 0.3); Navier-Stokes problem; 
regular case; ny = 5; At  = 0.03; 400 particles; Re = lo3 

Reynolds number of 1000, n4 = 400, n y  = 5 and different values of p, p = 0*1,0.2,0-3. After t = 2 we 
observe a sharp increase in the behaviour of the errors E ,  and E,, and the better estimate is 
obtained for the largest value of E which corresponds to p = 01. As E increases, the sharp increase 
of the errors is attenuated and a more uniform behaviour of the errors is observed in the time 
interval [O, 181. A possible explanation is that the time discretization of the trajectories of the 
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Figure 2. Influence of the cut-off parameter E = hP for different values of p (A, 0.3; B, 0.1); Stokes problem; regular case; 

ny = 5;  At = 0.03; 400 particles; Re = lo3 

particles induces an error in the discretized velocity. This error can be reduced by increasing the 
size of the cut-off parameter so that the integral is less singular. To try to confirm this hypothesis, 
we fixed the particle locations then solved only the Stokes problem. Figure 2 shows that the errors 
are smaller in that case when E is smaller ( p  = 0.3). 
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Table I. 400 particles; Re = lo3; ny = 5; At = 0.03; E = h P  

P 0.08 0.1 0 2  0.3 0.33 

E” (0) 0.69 0.58 0.23 0.09 0.07 
E P  1.0 1.08 4.48 5.0 7.0 
EYX 2.5 2.1 4.2 4.9 5.8 
E F  1.3 0.95 1.6 2 5  3.8 

We remark from Table I that, for the case of the Navier-Stokes equations, there is an optimal 
choice for E which minimizes the three errors E,,  E ,  and EM in the interval [0,18]. This optimal 
choice for the numerical problem considered here is near p = 0.1. 

We look now at the errors E,,  E ,  and E M  as a function of ny for n,=400, ~ = h ’ . ~  and a 
Reynolds number of 1000. It is seen from Figure 3 that for n y  = 2 or 5 the behaviour of the errors is 
very similar. At the beginning the errors increase sharply and tend to oscillate around a local 
maximum. In contrast to these two cases, we observe that for n y  = 0 the increase in the errors is not 
so steep. However, in this last case the errors E ,  and E ,  are important. They are not of the same 
order as for the two preceding cases, n y  = 2 or 5. Thus the accuracy of the method is improved by 
the use of internal iterations. This is not as significant for the errors computed with the velocity E ,  
as for the errors based on the vorticity, E ,  and E M .  This has to be related with the fact that E,, 
even for ny=O,  was not so bad at t = O  compared with the value of E ,  at the same time. 

The third example we present is the effect of varying the number n4 of particles. As n4 increases, h 
decreases, and we can see in Figure 4 the results for n y  = 5, E = h’”, n4 = 100, 225, 400 and a 
Reynolds number of order 1000. This numerical example shows that the different values of n4 used 
do not allow us to confirm the theoretical results. The errors do not in fact decrease with h. 
However, we observe that the influence of n4 is more sensitive on the errors computed with the 
vorticity, E ,  and E M .  

In Figure 5 we present results for the same case as in Figure 1 but for a higher Reynolds number, 
Re = 10000. A comparison between Figures 1 and 5 shows that the errors are of the same order of 
magnitude and the better estimate is here obtained for p = 0.1; although we find that for p = 0.2 
the results are better in the case Re = 10000 than for Re = 1000. In fact, for high Reynolds numbers 
the flow tends to be inviscid; for this case numerical results16 show that p must be chosen larger 
than in the viscous case we consider here. Thus for a fixed number of particles we must increase p if 
we increase the Reynolds number. 

We now consider the second test problem: 

wo(z) = 1 if / /z/1 < 1, 
w,(z)=O if llzll > 1. 

The effect of the diffusion will be an instantaneous smoothing of the vorticity. The initial 
distribution of particles is located in the square [ - R ,  R]’,  where R is greater than 1. For this 
initial condition the integral (17) is very costly to compute, so we do  not use the errors E ,  and E ,  
but only E M .  Let us point out that this quantity has been found to vary in the same way as the two 
other computed errors in the previous example. 

It is seen from Figure 6 that the behaviour of the error EM as a function of E is similar at  the 
beginning of the calculation to that previously observed (Figure 1): the best value of the error is 
obtained for the smallest value of E. For p = 0 5  or 0.6 the curves are similar but the error is a little 
bit lower in the case p = O . 5 .  From Table I1 we find, as in the first test case, that there exists an 
optimal choice for E which is near the value p = 0.5. 
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Figure 3. Influence of the number ny (A, 5; B, 0 C, 2) of internal iterations; Navier-Stokes problem; regular case; E = I I O ' ~ ;  

A t  = 0.03; 400 particles; Re = lo3 

In Figure 7 we can see the influence of the parameter ny. As in the previous example (Figure 3), 
the behaviour of the error is very similar for ny > 1. The case n y  = 0 gives large values of the error 
and has not been drawn in this figure. 

We see in Figure 8 a large decrease in the error as a function of the number of particles (225 and 
400 particles). However, it does not seem useful to increase this number over a certain value as it 
does not really improve the results (400 and 625 particles). 

These examples show that the method works even with singular initial data. 
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Figure 4. Influence of the number n4 (A, 400, B, 225; C, 100) of particles; Navier-Stokes problem; regular case; 

E = h0"; ny = 5; A t  = 0.03; Re = lo3 

Finally, if we increase the Reynolds number, with a fixed number of particles (n4 = 400), we find 
that the error is more important at higher Reynolds number (Figure 9). We can improve these 
results by increasing the number of particles as shown in Figure 10. As the Reynolds number 
increases, the effect of the diffusion is less important and the discretization of the viscous term (7) 
with 400 particles, which works well at Re = 1O00, is not fine enough to take into account this 
effect at higher Reynolds numbers; so this is balanced by increasing the number of particles. 
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Figure 5. Influence of the cut-off parameter E = hP for different values of p (A, 0.1, B, 0.2, C, 0.3); Navier-Stokes problem; 

regular case; n y  = 5;  A t  = 0.03; 400 particles; Re = lo4 

Although the error EM is the only one available in the discontinuous case, we must remark that 
the results obtained do actually depend on the way of discretizing the functional M(t ) .  The 
quadrature formula necessary for its computation can be obtained either from the singular 
approximation wh of the vorticity defined by (4) or from its regularization defined by (15). We thus 
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Time 
Figure 6 .  Influence of the cut-off parameter E = h p  for different values of p (A, 0.5; B, 0.6; C, 0.7); Navier-Stokes problem; 

discontinuous case; ny = 2; A t  = 0.05; 400 particles; Re = lo3 

Time 

Figure 7. Influence of the number ny of internal iterations; (A, 2; B, 3; C, 5 )  Navier-Stokes problem; discontinuous case; 
E = hO”; At =005; 400 particles; Re = lo3 

obtain two other definitions: 
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Time 
Figure 8. Influence of the number ns (A, 225, 9,400, C, 625) of particles; Navier-Stokes problem; discontinuous case; 

E = ho ’; ny = 2; AZ = 0.05; Re = lo3 

Time 
Figure 9. Influence of the Reynolds number(A, lo3; B, lo4; C, lo5); Navier-Stokes problem; discontinuous case; E = 

ny = 2; A t  = 0.05; 400 particles 

Mi3’( t )=  Nk( t ) /Di3’ ( t ) ,  Di3’(t)= z h 2 W h ( z j ( t ) ,  t ) .  (26) 
j 

The scheme being conservative, the approximation Dh(t )  of the total vorticity is constant in time. 
Figure 1 1  presents the results obtained with the three definitions, in the regular case, and for 
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Table 11. 400 particles; Re = 10’; ny = 2; At = 0.05; E = hP 

P 0.2 0.4 0.5 0.6 0.7 

E M  (0) 5.4 1-72 1-26 1.14 1.15 
E Y  5 4 5  1.72 1.26 1.14 3.98 

different values of the number n y  of internal iterations. We can first remark that definition (25), 
which is the one used by Roberts’ for example, is the more favourable, with a maximum error 
during the time interval [0, 123 of order 0.1%, while our definition (22) gives an error of up to 27%. 
However, although the results are greatly dependent on the way of discretizing M(t ) ,  the 
differences reduce considerably when using internal iterations, and the three definitions then give 
similar results. 

The main aim of this paper has been to compare numerical solutions with analytical solutions. 
We want briefly to complete it by a comparison between our deterministic simulation of the 
diffusion and the previous random walk method proposed by Chorin.’ We present by way of 
example two tests relative to the regular case defined by (24); they concern the accuracy of the 
methods in terms of the number of particles (Figure 12) and the influence of the Reynolds number 
(Figure 13). 

In the random walk method the weight of each particle remains constant in time; on the other 
hand, each particle moves according to the law 

z j ( t ) = z j ( t ) + V j ,  t l j = ( t l j x ,  V j y h  

where T j  is determined by solving during A t  the classical convective part of the algorithm and 
where qjx and qjv  are two Gaussian-distributed random variables with zero mean value and 
variance a2 = 2vAt.  
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Figure 11. Influence of the definition of the moment error for different values of n,, (-, 0; - ,2;  + +, 5); regular case; 
~ = h ' ' ~ ;  At=0.03; 400 particles; Re= lo3 

Great care must be taken in the implementation of the random walk, as the results depend in 
practice on the way the Gaussian distribution is computed, and especially the random generator. 
Two initializations have been tested: a first from the NAG library and a second based on a 
classical congruence method. From a uniformly distributed sequence of points in [0, 13, the 
Gaussian distribution of points x has been constructed in three different ways: one from the NAG 
library, that of Roberts' and a third based on a polynomial approximation of the inverse of the 
cumulative distribution: t being a random number in the range 0 d t < 1, the number x searched 
is 2lI2 r~ erf-' (2t - 1). Among these six simulations, five of them gave results that were nearly 
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Figure 12. Comparison between the random walk method (+ + , np = 100; -, np = 625) and our deterministic 
algorithm (w, np = 100; -, np=625)  for different values of the number of particles; regular case; E = h0’3;  ny = 0; 

At = 0.03; Re = lo3 

equivalent. The final choice was the one which gave the best result, that is the one using an 
approximation of the cumulative distribution and random numbers based on a congruence 
method. 

Since in Chorin’s method the weight of each particle remains constant in time, definition (25) of 
the moment can be simplified to 
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Time 

Figure 13. Comparison between the random walk method ( + + , R e =  lo’; **, R e =  lo5) and our deterministic 
algorithm (ee, Re = lo3; -, Re = 10’) for different values of the Reynolds number; regular case; E = ha”; ny = 0; 

A t  = 0.03; 400 particles 

where n, is the number of particles. However, for a comparison with the deterministic algorithm, 
the first definition (22) has been kept, which explains, as seen above (see Figure 1 l), its important 
values. We have checked before that, with the second definition (25), the results we obtained in the 
singular case, according to our time scheme of order two, were of the same order of magnitude as 
that described by Roberts.2 

Moreover, no internal iteration has been considered in this comparison, as this new method of 
interpolation of the vorticity function does not work in Chorin’s method. This again explains the 
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large value of the errors, especially for the vorticity and the moment, as already seen for the case in 
Figure 3. 

The theoretical results show that the rate of convergence of the random method is of order 
v1/2/nq1/2. This is consistent with the numerical results presented in Figures 12 and 13, where 
Chorin's method seems to be less accurate and more sensitive to variation of the Reynolds 
number. Let us however emphasize that the algorithm (6), (7) is more expensive than the random 
walk, the ratio of cost being 1-6 for 400 particles (0.028CPU time per time step for the 
deterministic algorithm). 

In all these computations we can remark that the initial errors are different from zero; this is due 
to the fact that we do not use the exact value of the initial data, unlike in the case of classical 
methods such as finite difference methods. 

CONCLUSIONS 

The importance of the choice of the cut-off parameter E in the particle method has been pointed 
out. According to the theoretical results, in the particular case of the splitting algorithm: or in the 
linear case,' this parameter is greater here than in the inviscid case. We have also shown the 
necessity of a good interpolation of the vorticity function, as was already the case for the Euler 
equa t i~ns . '~  However, the important increase in the computational cost as a function of the 
number ny of internal iterations (20% CPU for ny = 2,50% CPU for ny = 5 )  and the improvement 
of the accuracy thus involved do not justify the use of a large number ny of internal iterations. 

We have also noted that it does not seem necessary to use a large number of particles. Over a 
certain value (225 particles for the first example and 400 for the second), the results obtained are 
similar. As for the finite difference method, high Reynolds computations require an increase in the 
number of points of discretization (here particles). Finally, this method seems to be easier to use 
than the splitting one, where a main difficulty is the choice of the splitting time step.' 

As for the case of vortex methods for inviscid fluids16 and for the random walk method for 
viscous fluids,z the algorithm described in the present paper is adapted to non-smooth initial data. 
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APPENDIX 

Let us recall in 2D the proof of the following consistency result: I ,  = 1 if a =  (2,O) or (0,2) and 
I ,  = 0 otherwise. By definition, 

D[, (z  - z')*(z' - 2 )  
I ,  = j ( 2 - z ) "  dz' . 

w 2  llz - z' II 
As assumed previously, [ is of radial symmetry and is an approximation of order k of 6, so that 
~ ( z ) = ~ ( l ~ I )  and 

(27) 

p1+lC(p)dp=0, 1 = 1 , .  . . , k - 1 ,  leven, s 
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Setting t E ( z )  = ( ~ / E ’ ) [ ( z / E ) ,  we have 

05, (4.  z = (I z 11~3) ?(I z I/&), 
Finally, setting z’-z=&pSZ, with R in S ,  (the unit sphere in R2), the previous integral can be 
written as: 

with 
J ,  = js, SZ’dR. 

Using the fact that: 1 d la1 d k +  1 and inequality (29), we deduce: 

lim plul c(p )  = Iim plal i ( p )  = 0. 
P - 0  P - m  

Integration by parts then gives 

We remark that J ,  = 0 if one of the coefficients ai is odd, and by (28 )  the integral above is equal to 
0 for lcll even and 4 d 1cl1 d k + 1. Thus the only two cases for which I ,  # 0 are a = (2,O) or (0,2); 
one easily verifies that the resulting value of I ,  is then equal to 1. 
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